1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
//! This module provides a Rust wrapper for Hexchat's list related API. A list
//! can be accessed by creating a `ListIterator` by passing the name of one of
//! the list types to the constructor. The iterator itself can be used to
//! access list item fields by name using `get_field()`. Fields can't be
//! accessed until `next()` has been invoked to advance the internal pointer.
//! This iterator can be used in loops like any other iterator, or `collect()`
//! can be called to generate a vector or other collections.
use libc::c_void;
use libc::time_t;
use core::panic;
use std::cell::RefCell;
use std::fmt;
#[cfg(feature = "threadsafe")]
use std::thread;
use std::rc::Rc;
#[cfg(feature = "threadsafe")]
use crate::MAIN_THREAD_ID;
use crate::context::*;
use crate::errors::HexchatError;
use crate::hexchat::Hexchat;
use crate::hexchat_entry_points::PHEXCHAT;
use crate::list_item::ListItem;
use crate::utils::*;
// Local types.
use FieldValue::*;
use HexchatError::*;
/// The `ListIterator` wraps the list pointer and related functions of Hexchat.
/// It provides are more Rust OO interface. The iterator returns clones of
/// itself that can be used to access the current list item's fields through
/// `get_field()`. The list iterator object is internally a smart pointer,
/// among other things. You can clone it if you need multiple references to
/// a list.
#[derive(Clone)]
pub struct ListIterator {
field_names : Rc<Vec<String>>,
data : Rc<RefCell<ListIteratorData>>,
}
impl ListIterator {
/// Creates a new list iterator instance.`
/// # Arguments
/// * `list_name` - The name of one of the Hexchat lists ('channels', 'dcc',
/// 'ignore', 'notify', 'users').
/// # Returns
/// * An iterator to the list of the requested name, or `None` if the list
/// doesn't exist.
///
pub fn new(list_name: &str) -> Option<Self> {
#[cfg(feature = "threadsafe")]
assert!(thread::current().id() == unsafe { MAIN_THREAD_ID.unwrap() },
"ListIterator::new() must be called from the main thread.");
let name = str2cstring(list_name);
let hc = unsafe { &*PHEXCHAT };
let list_ptr = unsafe { (hc.c_list_get)(hc, name.as_ptr()) };
if !list_ptr.is_null() {
let mut field_types = vec![];
let mut field_names = vec![];
unsafe {
// Get the list pointer to field names.
let c_fields = (hc.c_list_fields)(hc, name.as_ptr());
let mut c_field = *c_fields;
let mut i = 0;
// Build a mapping between field names and field types.
while !c_field.is_null() && *c_field != 0 {
// The first char of the name is the type.
let c_typ = *c_field;
// Advance the char pointer once to get the name w/o type
// char.
let field = pchar2string(c_field.add(1));
field_types.push((field.clone(), c_typ));
field_names.push(field);
i += 1;
c_field = *c_fields.add(i);
}
field_names.sort();
}
Some( ListIterator {
field_names: Rc::new(field_names),
data: Rc::new(
RefCell::new(
ListIteratorData {
list_name : list_name.to_string(),
hc,
field_types,
list_ptr,
started: false,
}))})
} else {
None
}
}
/// Eagerly constructs a vector of `ListItem`s. The iterator will be spent
/// afterward.
///
pub fn to_vec(&self) -> Vec<ListItem> {
self.map(ListItem::from).collect()
}
/// Creates a `ListItem` from the field data at the current position in
/// the list.
///
pub fn get_item(&self) -> ListItem {
ListItem::from(self)
}
/// Returns a slice containing the field names of the list items.
///
pub fn get_field_names(&self) -> &[String] {
&self.field_names
}
/// Returns the value for the field of the requested name.
///
/// # Arguments
/// * `name` - The name of the field to retrieve the value for.
///
/// # Returns
/// * A `Result` where `Ok` holds the field data, and `Err` indicates the
/// field doesn't exist or some other problem. See [HexchatError] for the
/// error types. The values are returned as `FieldValue` tuples that hold
/// the requested data.
///
pub fn get_field(&self, name: &str) -> Result<FieldValue, HexchatError> {
let cell = &*self.data;
let data = &*cell.borrow();
if data.started {
let field_type_opt = data.get_type(name);
if let Some(field_type) = field_type_opt {
self.get_field_pvt(data, name, field_type)
} else {
Err(ListFieldNotFound(name.to_owned()))
}
} else {
Err(ListIteratorNotStarted("The iterator must have `.next()` \
invoked before fields can be accessed."
.to_string()))
}
}
/// Traverses a list while invoking the supplied callback to give the
/// record data. This is an alternative push model approach to accessing
/// the list data sequentially. The visitor callback has the form:
///
/// ```FnMut(&String, &FieldValue, bool) -> bool```
///
/// The first parameter is the field name, followed by its value,
/// then a boolean that when `true` indicates the start of a new record.
/// The callback returns `true` to keep going. If it returns `false`,
/// the traversal stops.
///
pub fn traverse<F>(&self, mut visitor: F)
where
F: FnMut(&String, &FieldValue, bool) -> bool
{
let cell = &*self.data;
'main: for _item in self {
let data = &*cell.borrow();
let mut start = true;
for (field_name, field_type) in &data.field_types {
let value = self.get_field_pvt(data, field_name, *field_type)
.unwrap();
if !visitor(field_name, &value, start) {
break 'main;
}
start = false;
}
}
}
/// Internal method that gets the value of a field given the field name
/// and type. This should remain private in scope to this file as using
/// the wrong type when accessing fields can cause instability. This method
/// is invoked by `traverse()` and `get_field()`.
///
fn get_field_pvt(&self, data: &ListIteratorData, name: &str, field_type: i8)
-> Result<FieldValue, HexchatError>
{
let c_name = str2cstring(name);
unsafe {
match field_type {
// Match against the ascii values for one of 's', 'i',
//'p', or 't'.
115 /* 's' (string) */ => {
let val = (data.hc.c_list_str)(data.hc,
data.list_ptr,
c_name.as_ptr());
Ok(StringVal(pchar2string(val)))
},
105 /* 'i' (integer) */ => {
let val = (data.hc.c_list_int)(data.hc,
data.list_ptr,
c_name.as_ptr());
Ok(IntVal(val))
},
112 /* 'p' (pointer) */ => {
let networkcstr = str2cstring("network");
let channelcstr = str2cstring("channel");
if name.to_lowercase() == "context" {
let network = (data.hc.c_list_str)(data.hc,
data.list_ptr,
networkcstr
.as_ptr());
let channel = (data.hc.c_list_str)(data.hc,
data.list_ptr,
channelcstr
.as_ptr());
if let Some(c) = Context::find(&pchar2string(network),
&pchar2string(channel))
{
Ok(ContextVal(c))
} else {
Err(ContextAcquisitionFailed("Context unavailable."
.to_string()))
}
} else {
let ptr = (data.hc.c_list_str)(data.hc,
data.list_ptr,
c_name.as_ptr());
Ok(PointerVal(ptr as u64))
}
},
116 /* 't' (time) */ => {
let val = (data.hc.c_list_time)(data.hc,
data.list_ptr,
c_name.as_ptr());
Ok(TimeVal(val))
},
_ => {
// This should never happen.
Err(UnknownType(field_type.to_string()))
},
}
}
}
}
impl Iterator for ListIterator {
type Item = Self;
/// The standard method for iterators. The items returned are clones of the
/// iterator itself. Calling `next` on the iterator advances an internal
/// pointer used to access Hexchat data.
///
fn next(&mut self) -> Option<Self::Item> {
let data = &mut *self.data.borrow_mut();
data.started = true;
if unsafe { (data.hc.c_list_next)(data.hc, data.list_ptr) != 0 } {
Some(self.clone())
} else {
None
}
}
}
impl Iterator for &ListIterator {
type Item = Self;
fn next(&mut self) -> Option<Self::Item> {
let data = &mut *self.data.borrow_mut();
data.started = true;
if unsafe { (data.hc.c_list_next)(data.hc, data.list_ptr) != 0 } {
Some(self)
} else {
None
}
}
}
/// Holds the iterator state and maps the field names to their data type.
/// # Fields
/// * `field_types` - A mapping of field names to data type.
/// * `field_names` - The list of field names for the particular list.
/// * `list_ptr` - A raw pointer to a list internal to Hexchat.
/// * `hc` - The Hexchat pointer.
/// * `started` - true if `next()` has aready been called on the Rust iter.
///
#[allow(dead_code)]
struct ListIteratorData {
list_name : String,
field_types : Vec<(String, i8)>,
hc : &'static Hexchat,
list_ptr : *const c_void,
started : bool,
}
impl ListIteratorData {
/// Returns the type of the given field. The field lists are short, so
/// a simple comparisons search for the right item may be quicker than
/// a HashMap's hashings and lookups.
#[inline]
fn get_type(&self, field: &str) -> Option<i8> {
let fields = &self.field_types;
Some(fields.iter().find(|f| f.0 == field)?.1)
}
}
impl Drop for ListIteratorData {
/// Frees the Hexchat internal list pointer.
fn drop(&mut self) {
unsafe {
(self.hc.c_list_free)(self.hc, self.list_ptr);
}
}
}
/// # Field Data Types
/// * String - A string has been returned. The enum item holds its value.
/// * Int - Integer value.
/// * Pointer - This will be updated to be Context soon.
/// * Time - Holds a `time_t` numeric value.
///
#[derive(Debug, Clone)]
pub enum FieldValue {
StringVal (String),
IntVal (i32),
PointerVal (u64),
ContextVal (Context),
TimeVal (time_t),
}
impl FieldValue {
/// Convert a StringVal variant to a String. FieldValue also implements
/// `From<String>`` so you can also use `let s: String = fv.into();`
/// to convert.
///
pub fn str(self) -> String {
match self {
StringVal(s) => s,
_ => panic!("Can't convert {:?} to String.", self),
}
}
/// Convert an IntVal variant to an i32. FieldValue also implements
/// `From<i32>` so you can also use `let i: i32 = fv.into();`
/// to convert.
///
pub fn int(self) -> i32 {
match self {
IntVal(i) => i,
_ => panic!("Can't convert {:?} to i32.", self),
}
}
/// Convert a PointerVal variant to a u64. FieldValue also implements
/// `From<u64>` so you can also use `let p: u64 = fv.into();`
/// to convert.
///
pub fn ptr(self) -> u64 {
match self {
PointerVal(p) => p,
_ => panic!("Can't convert {:?} to u64.", self),
}
}
/// Convert a TimeVal variant to a time_t (i64). FieldValue also implements
/// `From<time_t>` so you can also use `let t: time_t = fv.into();`
/// to convert.
///
pub fn time(self) -> time_t {
match self {
TimeVal(t) => t,
_ => panic!("Can't convert {:?} to time_t.", self),
}
}
/// Convert a ContextVal variant to a Context. FieldValue also implements
/// `From<Context>` so you can also use `let c: Context = fv.into();`
/// to convert.
///
pub fn ctx(self) -> Context {
match self {
ContextVal(c) => c,
_ => panic!("Can't convert {:?} to Context.", self),
}
}
}
impl From<FieldValue> for String {
fn from(v: FieldValue) -> Self {
v.str()
}
}
impl From<FieldValue> for i32 {
fn from(v: FieldValue) -> Self {
v.int()
}
}
impl From<FieldValue> for u64 {
fn from(v: FieldValue) -> Self {
v.ptr()
}
}
impl From<FieldValue> for time_t {
fn from(v: FieldValue) -> Self {
v.time()
}
}
impl From<FieldValue> for Context {
fn from(v: FieldValue) -> Self {
v.ctx()
}
}
impl fmt::Display for FieldValue {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
StringVal(s) => { write!(f, "{}", s) },
IntVal(i) => { write!(f, "{:?}", i) },
PointerVal(p) => { write!(f, "{:?}", p) },
TimeVal(t) => { write!(f, "{:?}", t) },
ContextVal(c) => { write!(f, "ContextVal({})", c) },
}
}
}